
Spec V1.0

Geniatech Rockchip series

Linux Software Development Guide

Contact us for more details: https://www.geniatech.com/

1

Foreword

Overview
This document serves as the geniatech rockchip series of Linux software development

guidelines, and aims to help software development engineers and technical support engineers get

started with geniatech rockchip Linux development and debugging faster. The product development

guidance of geniatech rockchip series will be continuously updated on this document in the

future.

Product version
Product name Kernel version Buildroot version
XPI-RK3128 Linux4.4 2018.02_rc3

Audience
This document (this guide) is mainly applicable to the following engineers: Software

development engineers

Revision History
date version author audit explanation of the revision

2020-11-23 V1.00 zyy cf 1. Initialize geniatech rockchip linux

development guide structure

2. Support xpi-rk3128

Contact us for more details: https://www.geniatech.com/

2

catalog
Prefacetable of Contents

1. Support list

2. Document and tool index

3. SDK software architecture

4. Build development environment

5. SDK installation preparation

6. SDK compilation

7. SDK image burning

8. U-boot development

9. Kernel development

10. Buildroot development

11. Hardware information

Contact us for more details: https://www.geniatech.com/

3

1.Support list
1.1product list

1.2Document development support list

chip Model no Software
documentation

support

functional specification

Rk3288 DR320

DB5

CBD96

DB288

Does not

support

Rk3399 APC3399 Does not

support

Rk3128 XPI-3128 Does not

support

Rk3399pro Does not

support

chip The hardware
board type

functional specification

xpi-rk3128 Development

board

hdmi out、ent、usbx4、wifi、rtc、Lead out 40pin pin cable

Contact us for more details: https://www.geniatech.com/

4

2. Document and tool
index
2.1 Document Index

The documents released with Rockchip Linux SDK are designed to help developers quickly get

started with development and debugging. The content involved in the documents does not cover all

development knowledge and problems. The document list is constantly being updated. If you have

any questions or needs on the document, please contact usRockchip Linux SDK comes with Develop

reference documents (development guide documents), Platform support lists (support list),

RKTools manuals (tool usage documents), SoC platform related (chip platform related documents),

Linux reference documents (Linux System Development Guide).

2.2 Tool Index
The tools released with Rockchip Linux SDK are used in the development and debugging phase

and mass production phase. The tool version will be updated continuously with the SDK update. If

you have any questions or needs on the tool, please contact us. Rockchip Linux SDK comes with

linux (tools used in the Linux operating system environment) and windows (tools used in the

Windows operating system environment) in the tools directory.

tools/
├── linux
│ ├──Linux_Pack_Firmware（Linux firmware packaging tool）

│ ├──Linux_SecureBoot（Linux firmware signature tool）

│ ├──Linux_TA_Sign_Tool.rar
│ ├──Linux_Upgrade_Tool（Linux development tool）

└── windows
├── AndroidTool （development tool）

│ ├── AndroidTool_Release_v2.52
│ └── rockdev（Firmware packaging tool）
├── DriverAssitant_v4.7.zip（Driver installation assistant）
├── PCBATool_Setup_V1.0.6_0516_3308.exe（PCBA test and PC tool）

├── efuse_v1.37.zip（Efuse burn tool）
├── FactoryTool_v1.61.zip（Factory mass production tool）

├── SecureBootTool_v1.89.zip（firmware signature tool）

├── SpiImageTools_v1.36.zip
├── EQ_DRC_TOOL_v1.1.zip（Voice and sound effect real-time tuning tool）

└── WNpctool_Setup_V1.1.9_180118.zip（manufacturer information

burning tool）

Contact us for more details: https://www.geniatech.com/

5

3.SDK software
architecture

3.1 SDK overview
3.1.1 buildroot sdk framework

3.1.1 buildroot sdk architectureBuildroot Linux SDK is a software development package based

on Buildroot-2018.02, which contains various system source codes, drivers, tools, and

application software packages used in Linux-based system development.

Buildroot is an open source embedded Linux system automatic construction framework on the

Linux platform. The entire Buildroot is composed of Makefile scripts and Kconfig configuration

files. You can configure through Buildroot to compile a complete Linux system software that can

be directly burned to the machine to run.

。Buildroot has the following advantages:

1. Build with source code, with great flexibility;

2. Convenient cross-compilation environment for rapid construction;

3. Each system component is easy to configure and convenient for custom development.

Contact us for more details: https://www.geniatech.com/

6

3.2 SDK software block diagram
The SDK software framework is divided into four levels: Bootloader, Linux Kernel, and

Libraries Applications from bottom to top.The contents of each level are as follows:

 The Bootloader layer mainly provides low-level system support packages, such as Bootloader,

U-Boot, ATF related support

 The Kernel layer mainly provides the standard implementation of Linux Kernel, and Linux is

also an open operating system. The Linux core of the Rockchip platform is the standard

Linux4.4 kernel, which provides basic support for security, memory management, process

management, network protocol stacks, etc.; it mainly manages device hardware resources

through the Linux kernel, such as CPU scheduling, cache, memory, I/ O etc.

 The Libraries layer corresponds to the general embedded system and is equivalent to the

middleware layer. Contains various system basic libraries and third-party open source

library support, and provides API interfaces for the application layer. System customizers

and application developers can develop new applications based on the Libraries layer API.

 The Applications layer is mainly to implement specific product functions and interaction

logic. It needs some system basic libraries and third-party program libraries to support.

Developers can develop and implement their own applications and provide various capabilities

of the system to end users.

3.3 SDK development process
The Buildroot Linux system is based on Linux Kernel and is an SDK developed for a variety of

different product forms. Based on this SDK, system customization and application migration and

development can be effectively realized.System development environment and compiled code. The

following will briefly introduce the process:

1) Check the system requirements: Before downloading the code and compiling, make sure that

the local development equipment can meet the requirements, including the hardware capabilities

of the machine, software system, tool chain, etc. Currently, the SDK supports compilation under

the Linux operating system environment, and only provides toolchain support under the Linux

environment. Other systems such as MacOS and Windows do not currently support it.

2) Build a compilation environment: Introduce various software packages and tools that need

to be installed on the development machine, learn about the Linux operating system version that

Buildroot Linux has verified, and the library files that it depends on when compiling.

Contact us for more details: https://www.geniatech.com/

7

3) Selection of equipment: During the development process, developers are required to select

the corresponding hardware board type according to their own needs.

4) Download the source code: After selecting the device type, you need to install the repo

tool to download the source code in batches.

5) System customization: Developers can customize U-Boot, Kernel, Buildroot according to the

hardware board and product definition used.

6) Compilation and packaging: After having the source code, select the product and

initialize the relevant compilation environment, and then execute the compilation commands,

including the overall or module compilation and compilation cleanup.

7) Burn and run:

4.Development
environment setup

4.1 overview
This section mainly introduces how to build a local compilation environment to compile

Rockchip Buildroot Linux SDK source code. The current SDK only supports compilation under Linux

and provides a cross-compilation tool chain under Linux.A typical embedded development

environment usually includes Linux server, Windows PC and target hardware version. Taking RK3308

as an example, the typical development environment is shown in Figure 4-1.

 A cross-compilation environment is established on the Linux server to provide code update

download and code cross-compilation services for software development.

Contact us for more details: https://www.geniatech.com/

8

 Windows PC and Linux server share the program, and install SecureCRT or puTTY, remotely log

in to the Linux server through the network, perform cross-compilation, and code development

and debugging.

 The Windows PC is connected to the target hardware board through the serial port and USB,

and the compiled image file can be programmed to the target hardware board, and the system

or application program can be debugged.

Note: Windows PC is used in the development environment. In fact, many tasks can also be

done on Linux PC, such as using minicom instead of SecureCRT or puTTY. Users can choose by

themselves.

4.2 Linux Server development environment setup
The Rockchip Buildroot Linux SDK was developed and tested on Ubuntu 16.04. Therefore, we

recommend using Ubuntu 16.04 for compilation. There is no specific test for other versions, and

the software package may need to be adjusted accordingly.In addition to system requirements,

there are other hardware and software requirements.

 Hardware requirements: 64-bit system, hard disk space greater than 40G. If you do multiple

builds, you will need more hard disk space.

 Package dependencies: In addition to python 2.7, make 3.8, and git 1.7, some additional

software packages need to be installed, which will be listed in the package installation

chapter.

4.2.1 The release package uses the Linux server system version

The SDK development environment installs the following versions of Linux systems, and the

SDK is compiled with this Linux system by default:

Ubuntu 16.04.2 LTS

Contact us for more details: https://www.geniatech.com/

9

4.2.2 Dependent package installation

After the operating system is installed, and the user has configured the network environment

by himself, you can proceed to the following steps to complete the installation of the relevant

software packages.

4.2.3 Introduction to Cross Compiler Toolchain

Since Rockchip Buildroot SDK is currently only compiled under Linux, we also only provide a

cross-compilation tool chain under Linux. The prebuilt directory of the compilation tool chain

used by U-Boot and Kernel is under prebuilt/gcc, and buildroot uses the tool chain compiled in

this open source software.

1) U-Boot and Kernel compilation tool chain

Platform Install dependent package

xpi-rk3128
1. apt-get update

sudo apt-get update

sudo apt-get upgrade

2. Install the required dependent software packages when compiling Kernel and
U-Boot

sudo apt-get install git gnupg flex bison gperf build-essential zip curl
zlib1g-dev \

gcc-multilib g++-multilib libc6-dev-i386 lib32ncurses5-dev x11proto-core-
dev libx11-dev \

lib32z1-dev ccache libgl1-mesa-dev libxml2-utils xsltproc unzip device-tree-
compiler \

liblz4-tool

3. Install the required dependent software packages when compiling Buildroot

sudo apt-get install libfile-which-perl sed make binutils gcc g++ bash
patch gzip \

bzip2 perl tar cpio python unzip rsync file bc libmpc3 git repo texinfo pkg-
config cmake \

tree texinfo

If you encounter an error during compilation, you can install the
corresponding software package based on the error message.

Contact us for more details: https://www.geniatech.com/

10

prebuilts/gcc/linux-x86/aarch64/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux -

gnu/bin/aarch64-linux-gnu-

Corresponding version

gcc version 6.3.1 20170404 (Linaro GCC 6.3-2017.05)

2)Buildroot Compilation tool chain

buildroot/output/rockchip_rk3308_release/host/bin/aarch64-rockchip-linux-gnu-

Corresponding version

gcc version 6.4.0 (Buildroot 2018.02-rc3-00017-g9c68ede

If you need a toolchain for other platforms or versions, you need to compile it yourself.

After the above environment is prepared, the Linux server development environment has been

set up, and the source code can be downloaded and compiled.

4.2.4 Linux programming tool use

The burning tool on Linux system is published in tools\linux\Linux_Upgrade_Tool\

4.3 Windows PC Development environment setup

4.3.1 Development tool installation

Please install editing software such as SourceInsight and Notepad++ by yourself.

4.3.2 usb driver installation

During the development and debugging stage, the device needs to be switched to Loader mode or
Maskrom mode, and Rockusb driver needs to be installed to recognize the device normally.

The Rockchip USB driver installation assistant is stored in
tools\windows\DriverAssitant_v4.x.zip. Support xp, win7_32, win7_64, win8_32, win8_64 operating
systems.

The installation steps are as follows:

Contact us for more details: https://www.geniatech.com/

11

4.3.3 Windows burning tool use

The burning tool on the Windows system is released in

tools\windows\AndroidTool/AndroidTool_Release, which can be used for development, debugging, and

firmware burning in the Windows environment.

4.4 Target hardware board preparation
Please refer to selecting the corresponding hardware board for subsequent development and

debugging. The corresponding hardware instruction document will introduce the hardware interface,

instruction, and programming operation method.

5.SDK installation
preparation
5.1 brief introduction

Rockchip Buildroot Linux SDK

Contact us for more details: https://www.geniatech.com/

12

5.2 SDK acquisition
SDK is released through geniatech external server, and customers need to apply for SDK

corresponding to our company.

5.2.1 SDK download link

5.2.2 SDK code compression package

In order to facilitate customers to quickly obtain the SDK source code, geniatech

usually provides an init initialization compressed package of the corresponding hardware.

Developers can use the following methods.

Take xpi-3288 as an example:

tar xvzf SDK-RK3128-Buildroot_RKH190305-HWv1.0-20201020.tar.gz

cd rk3128linux0227

Platform FW Package version

XPI-3288 SDK-RK3128-Buildroot_RKH190305-HWv1.0-20201020.tar.gz V1.00

5.3 SDK Directory Structure
After the SDK download is complete, you can see the following directory structure in the root

directory:

Take xpi-3288 as an example：

├── app

├── buildroot

├── build.sh -> device/rockchip/common/build.sh

├── device

├── distro

├── docs

├── envsetup.sh -> buildroot/build/envsetup.sh

├── external

├── IMAGE

├── init.sh

├── kernel

├── Makefile -> buildroot/build/Makefile

├── mkfirmware.sh -> device/rockchip/common/mkfirmware.sh

├── npu

Platform Download link

XPI-rk3128 http://www.geniatech.net/hefei/sd-release/rk3128-series/SDK-RK3128-

Buildroot_RKH190305-HWv1.0-20201020.tar.gz

http://www.geniatech.net/hefei/sd-release/imx8_4.14.98_yocto-kernel-uboot-source_20200806/imx8_4.14.98_yocto-kernel-uboot-source_20200806.zip%C2%A0
http://www.geniatech.net/hefei/sd-release/imx8_4.14.98_yocto-kernel-uboot-source_20200806/imx8_4.14.98_yocto-kernel-uboot-source_20200806.zip%C2%A0

Contact us for more details: https://www.geniatech.com/

13

├── prebuilts

├── rkbin

├── rkflash.sh -> device/rockchip/common/rkflash.sh

├── rockdev

├── tools

└── u-boot

14 directories, 6 files

 The Buildroot directory stores the buildroot open source project code, and the root

file system can be customized

 build.sh is the system compilation script, which can be executed to compile the SDK

completely

 The device directory stores board-level configuration and some preset files, boot

scripts, etc.

 The docs directory stores relevant documents provided by the SDK

 The external directory stores SDK related libraries and tool source code

 Rockdev stores all image file backups and version compilation information after

build.sh is executed

 kernel is part of the source code of the kernel

 The mkfirmware.sh script can package the image files and copy them to the rockdev/

directory

 The prebuilts directory stores the cross-compilation tool chain used for U-Boot and

Kernel compilation

 rkbin The directory stores some key binary files of the Rockchip platform,

including: ddr.bin,miniloader.bin,bl31.bin，It will be used during U-Boot

compilation.

 tools The directory stores development tools, debugging tools, and mass production

tools under Windows and Linux environments

 The u-boot directory stores the source code of the U-Boot part

Contact us for more details: https://www.geniatech.com/

14

6 .SDK Compiling
6.1 Uboot Compiling

 XPI3128

cd rk3128linux0227

./build.sh BoardConfig.mk

./build.sh uboot

After compiling, three image files of trust.img, px30_loader_v1.07.107.bin and uboot.img

will be generated.

ERROR1：If rk3128 is not selected in ./build.sh BoardConfig.mk, proceed as follows:

cd device/rockchip/

rm .BoardConfig.mk

ls -n rk3128/BoardConfig.mk .BoardConfig.mk

6.2 Kernel Compiling
 XPI3128

./build.sh kernel

After compiling, a boot.img image file will be generated.

Kernel configuration

HW version The silk print on board Corresponding configuration file

XPI3128

V1.00

RKH190305 VER1.0 rockchip_linux_defconfig

rk3128-fireprime.dts

6.3 Buildroot Compiling

 XPi3128

./build.sh buildroot

After compiling，A rootf.img image file will be generated in rockdev/.

6.4 Automatically compile scripts
In order to improve the efficiency of compilation and reduce the possible misoperation of

manual compilation, the SDK integrates fully automated compilation scripts to facilitate

firmware compilation and backup.

Contact us for more details: https://www.geniatech.com/

1）The original file of the fully automated compilation script is stored

in:device/rockchip/common/build.sh

2）Modify the specific variables in the device/rockchip/rkxx (chip platform)/BoardConfig.mk

script to compile the corresponding product firmware.

Such as xpi3128 platform, you can modify the device/rockchip/rk3128/BoardConfig.mk file:

3）Execute automatic compilation script:

./build.sh

The script will automatically configure environment variables, compile U-Boot, compile

Kernel, compile Buildroot, compile Recovery and then generate firmware.

4) Script generated content:

The script will copy the compiled firmware:

Under the Rockdev/ directory, the specific path is subject to actual generation. Every time

you compile, a new directory is created and saved, the firmware version of the debugging

development process is automatically backed up, and various information about the firmware

version is stored.

 XPI-RK3288

HW version The silk print on board Compiling

XPI-RK3288

V1.00

RKH190305 VER1.0 1. Automatic compilation

cd rk3128linux0227

./build.sh BoardConfig.mk

./build.sh

2.编译生成 rockdev/下

boot.img

misc.img

parameter.txt

rootfs.ext4

trust.img

update.img

MiniLoaderAll.bin

oem.img

recovery.img

rootfs.img

uboot.img

userdata.img

Contact us for more details: https://www.geniatech.com/

6.5 Partial compilation of modules
In order to facilitate development and debugging, the fully automated compilation

script also supports the compilation of individual modules, which is convenient for

module debugging. Some modules can be specified and compiled. For partial compilation

of the module, see subsequent updates.

7.SDK Image burning
7.1 Overview

This chapter mainly introduces the process of how to program the completed image

file (image) and run it on the hardware device. Several image programming tools

provided by the Rockchip platform are introduced as shown in the table below. You can

choose a suitable programming method for programming. Before programming, you need to

install the latest USB driver, see 4.3.2 USB Driver Installation for details.

Tool Operating
system

Description

Rockchip
Development Tools

Windows Discrete upgrade firmware and the entire
update upgrade firmware tool

7.2 Introduction to burning mode

Several modes of Rockchip platform hardware operation are shown in the table below，Only when the
device is in Maskrom and Loader mode, the firmware can be programmed or the on-board firmware can
be updated.

Mode Tool
upgrading

Introduction

Maskrom Support When Flash has not burned the firmware, the chip will

boot into Maskrom mode, and the firmware can be burned

for the first time; during development and debugging, if

the Loader fails to start normally, you can also enter

Maskrom mode to burn the firmware.

Loader Support In Loader mode, firmware can be programmed and upgraded.

A certain partition image file can be programmed

separately through the tool to facilitate debugging.

7.3 Rockchip Development Tool Programming

Contact us for more details: https://www.geniatech.com/

For the programming instructions, please refer to "Rockchip Development Tools Manual.pdf"

under the docs\RKTools manuals directory.

The SDK provides programming tools, as shown below. After compiling and generating the

corresponding firmware, enter the programming mode and you can flash the machine. For machines

that have already burned other firmware, you can choose to burn the firmware again, or choose a

low-level device, erase idb, and then flash.

7.3.1 Enter programming mode

Take xpi-rk3128 as an example: first press and hold the button next to the infrared head,

power on, and connect to the USB port for programming.

7.3.2 Downloading image

Contact us for more details: https://www.geniatech.com/

1）The USB connects hardware board and enters the programming mode.
2）Open the tool and click the Download Mirror menu, click… column will pop up a file selection box, you can

select the img of the corresponding partition, and configure several other items at once. geniatech rockchip series
selection: 1, 2, 3, 4, 6, 9, 10

3）After the configuration is complete, click "Execute" and you can see the blank box on the right to enter the
download prompt. The "Low" button is used to erase the device, and the "Clear" button is to clear the text in the edit
box.

7.3.3 Upgrade firmware (update.img exists only for buildroot)

Contact us for more details: https://www.geniatech.com/

1）Click the firmware to select the newly packaged update.img file, and click the upgrade button to download.
(Note that the device must be in download mode).

8.U-boot Development
8.1 Rockchip U-Boot introduction
Rockchip U-Boot next-dev branch is the version that Rockchip cut out from the official version of
U-Boot v2017.09 for development.

Support firmware startup of RK Android platform;

Start with the latest Android AOSP (such as GVA) firmware;

Support Linux Distro firmware startup;

Support Rockchip miniloader and SPL/TPL two pre-loader boot;

Support LVDS, EDP, MIPI, HDMI and other display devices;

Support Emmc, Nand Flash, SPI NOR flash, SD card, U disk and other storage devices to start;

Support FAT, EXT2, EXT4 file system;

Support GPT, RK parameter partition format;

Support boot logo display, charging animation display, low power management, power
management;

Support I2C, PMIC, CHARGE, GUAGE, USB, GPIO, PWM, GMAC, EMMC, NAND, interrupt and other
drivers;

Support RockUSB and Google Fastboot two USB gadgets to burn EMMC;

Support Mass storage, ethernet, HID and other USB devices;

Support dtb using Kernel;

Support dtbo function;

Contact us for more details: https://www.geniatech.com/

8.2 Platform compilation

8.2.1 rkbin
The rkbin project mainly stores Rockchip's non-open source bin files (trust, loader, etc.), scripts,
packaging tools, etc., so rkbin is just a "toolkit" project.

The rkbin project needs to maintain the same level directory relationship with the U-Boot project,
otherwise the rkbin warehouse will not be found during compilation. When compiling the U-Boot
project, the compiling script will index the relevant bin files and packaging tools from the rkbin
warehouse, and finally generate trust.img, uboot.img, loader and other relevant firmware in the U-
Boot root directory.

8.2.2 gcc Tool chain
The default compiler used is version gcc-linaro-6.3.1:

32-bit compiler：gcc ‐linaro ‐6.3.1 ‐2017.05 ‐x86_64_arm ‐linux ‐gnueabihf
64-bit compiler：gcc ‐linaro ‐6.3.1 ‐2017.05 ‐x86_64_aarch64 ‐linux ‐gnu

The toolkit provided by Rockchip: prebuilts is used by default. Please ensure that it
maintains the same level directory relationship with the U-Boot project.

If you need to change the compiler path, you can modify the content in the compilation script ./make.sh:
GCC_ARM32=arm ‐linux ‐gnueabihf‐
GCC_ARM64=aarch64 ‐linux ‐gnu ‐

TOOLCHAIN_ARM32=../prebuilts/gcc/linux ‐x86/arm/gcc ‐linaro ‐6.3.1 ‐

2017.05-X86_64_ arm- linuxgnueabihf/
bin
TOOLCHAIN_ARM64=../prebuilts/gcc/linux ‐x86/aarch64/gcc ‐linaro ‐6.3.1 ‐

2017.05 ‐x86_64_aarch64 ‐

linux -gnu/bin

8.2.3 Compiling

Compiling command：

./make.sh [board] ‐ ‐ ‐ ‐ [board] The source of this name is：

configs/[board]_defconfig file。

Command example：

./make.sh evb‐ rk3308 ‐ ‐ ‐ ‐ build for evb‐ rk3308_defconfig

./make.sh firefly‐ rk3288 ‐ ‐ ‐ ‐ build for firefly‐ rk3288_defconfig

_ _

Contact us for more details: https://www.geniatech.com/

21

9.Kernel Development
9.1.1 Overview

Earlier versions of Linux Kernel configured the board-related information directly

in the board-level configuration file, such as IOMUX, the default high/low GPIO, and

the client device information under each I2C/SPI bus. In order to abandon this ‘hard

code’ approach, Linux introduces the concept of Device Tree to describe different

hardware structures.

Device Tree data is highly readable and follows the DTS specification, which is

usually described in .dtsi and .dts source files. In the process of kernel compilation,

it is compiled into a binary file of .dtb. During the boot-up phase, dtb will be

loaded into an address space of RAM by bootloader (such as U-Boot), and the address

will be passed to Kernel space as a parameter. The kernel parses the entire dtb file

and extracts the information of each device for initialization.

This article aims to introduce how to add a new board dts configuration and some
common dts syntax descriptions. A more detailed introduction to the dts syntax is
beyond the scope of this article. If you are interested, please refer to:1.
https://www.devicetree.org/specifications/

2. Documentation/devicetree/bindings

9.1.2 Add a product DTS
9.1.2.1 Create dts file

Linux Kernel currently supports the use of dts on multiple platforms. The
dts files of the RK platform are stored in:

ARM:arch/arm/boot/dts/
ARM64 :arch/arm64/boot/dts/rockchip

The general naming rule for dts files is "soc-board_name.dts", such as rk3308-evb-
dmic-i2s-v10.dts. soc refers to the name of the chip, and board_name is generally named
according to the silk screen of the board. If your board is an all-in-one board, you
only need a dts file to describe it.

rk3308-ai-va-v10.dts
└── rk3308.dtsi

If the hardware design is the structure of the core board and the backplane, or

the product has multiple product forms, you can put the common hardware description in

the dtsi file, and the dts file describes the different hardware modules, and through

include "xxx.dtsi" The common hardware description is included.

https://www.devicetree.org/specifications/
https://www.devicetree.org/specifications/

Contact us for more details: https://www.geniatech.com/

22

9.1.2.2 Modify the Makefile of the directory where dts is located

diff --git a/arch/arm64/boot/dts/rockchip/Makefile
b/arch/arm64/boot/dts/rockchip/Makefile

index 073281d..7c329d4 100644

--- a/arch/arm64/boot/dts/rockchip/Makefile

+++ b/arch/arm64/boot/dts/rockchip/Makefile

@@ - 1,6 +1,9 @@

dtb-$(CONFIG_ARCH_ROCKCHIP) += px30-evb-ddr3-v10.dtb

dtb-$(CONFIG_ARCH_ROCKCHIP) += px30-evb-ddr3-lvds-v10.dtb

dtb-$(CONFIG_ARCH_ROCKCHIP) += px30-evb-ddr4-v10.dtb

+dtb-$(CONFIG_ARCH_ROCKCHIP) += rk3308-evb-amic-v10.dtb

When compiling kenrel, you can directly make dts-name.img (such as rk3308-evb-

amic-v10.img) to generate the corresponding resource.img (including dtb data).

9.1.2.3 Several explanations of dts syntax dts syntax can be like c/c++, through

#include xxx.dtsi to include other public dts data. The dts file will inherit the

attributes and values of all device nodes in the contained dtsi file.

If property is defined in multiple dts/dtsi files, its value will ultimately be
the definition of dts. All controller nodes related to the chip will be defined in
soc.dtsi. To enable the device function, you need to set its status in the dts file
as ”okay".

/dts-v1/;
#include "rk3308-evb-v10.dtsi"

/ {
/* rk3308-evb-v10.dtsi also defines this attribute, and the final value is the

defined value of this dts.
*/

model = "Rockchip RK3308 evb analog mic board";
compatible = "rockchip,rk3308-evb-amic-v10", "rockchip,rk3308";

/* The node under the root node
is a new device node */

sound {
compatible = "simple-audio-card";

...
};

};
/* The node under the non-root node is the device node described by the reference

included dtsi, and the value can be reset */

&i2s_8ch_2{

status = "okay";
#sound-dai-cells = <0>;

};

Contact us for more details: https://www.geniatech.com/

23

9.2 ARM、GPU、DDR Frequency modification
DVFS （Dynamic Voltage and Frequency Scaling）, this is a real-time voltage and

frequency adjustment technology. At present, the modules supporting DVFS in the 4.4

kernel include CPU, GPU, and DDR.

CPUFreq is a set of kernel developers defined to support dynamic adjustment of

low CPU power consumption, while taking into account CPU performance. CPUFreq CPU

usage, the current kernel version provides the following strategies:

interactive：Dynamic frequency adjustment according to CPU load；

conservative：Conservative strategy, adjust frequency and voltage step by

step；

ondemand：Dynamic frequency and voltage adjustment according to CPU load,

slower response than interactive strategy；

userspace：Users set voltage and frequency by themselves, the system will not

automatically adjust；

powersave：Prioritize power consumption, always set the frequency to the

lowest value；

performance：performance first, always set the frequency to the highest

value；

For detailed module functions and configuration, please refer to the docs\Develop

reference documents\DVFS\ directory. A53/A72/GPU/DDR have corresponding debugging

interfaces, which can be operated through ADB commands. The corresponding interface

catalog is as follows：

A53 ：/sys/devices/system/cpu/cpu0/cpufreq/

A72: /sys/devices/system/cpu/cpu4/cpufreq/

GPU: /sys/class/devfreq/ff9a0000.gpu/

DDR: /sys/class/devfreq/dmc/

这些目录下有如下类似节点：

available_frequencies：Show supported frequencies

available_governors： Display supported frequency conversion strategies

cur_freq：Show current frequency

governor：Display the current frequency conversion strategy

max_freq：Display the current maximum running frequency

min_freq：Display the current minimum running frequency

Take RK3399/RK3399pro GPU as an example for fixed frequency operation, the

process is as follows:

See which frequencies are supportedcat

/sys/class/devfreq/ff9a0000.gpu/available_frequencies

Switch frequency conversion strategy

echo userspace > /sys/class/devfreq/ff9a0000.gpu/governor

Fixed frequency

echo 400000000 > /sys/class/devfreq/ff9a0000.gpu/userspace/set_freq

cat /sys/class/devfreq/ff9a0000.gpu/cur_freq

Contact us for more details: https://www.geniatech.com/

24

10.BuildrootDevelopment
10.1 Buildroot Development basis

This section briefly introduces some common configuration modifications

in Buildroot development. Rockchip Buildroot Linux SDK uses Buildroot-2018.02

version.

Buildroot Basic Development Guide，See "The Buildroot User Manual.pdf" in

the docs\ Linux reference documents\ directory.

You can also directly visit the official website link to
browse:http://buildroot.org/downloads/manual/manual.html

10.1.1 Default configuration selection and compilation
After the customer configures the compilation dependencies according to the actual

compilation environment, follow the steps below and execute make.
$ source buildroot/build/envsetup.sh
You're building on Linux
Lunch menu...pick a combo:
1. rockchip_rk3308_release
2. rockchip_rk3308_debug
3. rockchip_rk3308_robot_release
4. rockchip_rk3308_robot_debug
5. rockchip_rk3308_mini_release

Which would you like? [1]
If you select rockchip_rk3308_release, enter the corresponding serial number 1.
$ make
After compiling, execute the mkfirmware.sh script in the SDK root directory to generate firmware
make Perform the following process
● Download source code
● Configure, compile and install cross toolchain
● Configure, compile, and install selected packages
● Install the selected format to generate the root file system
Buildroot output results are saved in the output directory. The specific directory is determined by the

configuration file. The above example is saved in the buildroot/output/rockchip_rk3308_release directory.
The subsequent compilation can be

Execute in the buildroot/output/rockchip_rk3308_release directory or the project root directory
(make menuconfig can also be executed in the project root directory). This directory includes several
subdirectories:

● image：Contains the compressed root file system image file
● build/: Contains all the source files, including the host tools and selected packages required by

Buildroot. This directory contains the source code of all modules.
● staging/: This directory is similar to the directory structure of the root file system and contains all

the header files and libraries generated by compilation, as well as other development files, but they are not
tailored and are relatively large, and are not suitable for the target file system.

● target/: Contains a complete root file system. Compared with staging, it has no development files,
no header files, and binary files are also strip processed.

● host/: The tools required for host-side compilation include cross-compilation tools.

10.1.2 Module configuration compilation

http://buildroot.org/downloads/manual/manual.html
http://buildroot.org/downloads/manual/manual.html

Contact us for more details: https://www.geniatech.com/

25

The above steps have selected a default configuration, but it may not meet our needs. We may
need to add some third-party packages or modify the configuration options of the package. Buildroot
supports graphical selection and configuration.

Buildroot supports make menuconfig|nconfig|gconfig|xconfig
Example, add libdrm support
After executing the source command and configuring the environment variables, you can go to

the root directory:
make menuconfig
Enter / to pop out the search interface as follows, enter libdrm, and press Enter.

Select 1, and then press space to select up

Contact us for more details: https://www.geniatech.com/

26

Then save and exit, save the configuration command, the configuration file under the
buildroot/configs/ directory will be modified;

make savedefconfig
Compile libdrm, generate libdrm
make libdrm
10.1.3 Busybox configuration modification
Configuration command:
make busybox-menuconfig
After the modification is completed, save the configuration through the command:
make busybox-update-config
10.1.4 Cross compilation tool
After Buildroot is compiled, a cross-compilation tool will be generated under the specified output

directory host directory, which we can use to compile the target program. The cross compilation tool
directory generated by the default configuration is:

buildroot/output/rockchip_rk3308_release/host/usr/bin/output/host/usr/bin/
We can directly compile the program with the cross compilation tool
./buildroot/output/rockchip_rk3308_release/host/usr/bin/output/host/usr/bin/aar ch64-rockchip-

linux-gnu-gcc main.c -o test
Floating point support (neon support is turned on in the following configuration), RK3308 supports

crc/crypto/fp/simd features, the configuration is as follows:
CFLAGS += -mcpu=cortex-a35+crc+crypto

10.1.5 Add local source code package
The above introduction is in the case that Buildroot already has a source code package, we can

choose to open the compilation, if Buildroot does not exist or how to integrate the application written by
ourselves into Buildroot?

Buildroot supports a variety of module compilation methods, including generic-package, cmake-
package, autotools-package, etc. We take generic-package as an example;

Example: package/rockchip/alsa_capture
1. Create the directory package/rockchip/alsa_capture
2. Create Config.in

config BR2_PACKAGE_ALSA_CAPTURE
bool "Simple ALSA Capture Demo"

3. Create alsa_capture.mk, where the source directory points to external/alsa_capture/src
##

###########
#
alsa_capture
##
###########
ifeq ($(BR2_PACKAGE_ALSA_CAPTURE), y)
ALSA CAPTURE VERSION:=1.0.0
ALSA_CAPTURE_SITE=$(TOPDIR)/../external/alsa_capture/src
ALSA_CAPTURE_SITE_METHOD=local

define ALSA CAPTURE BUILD CMDS
$(TARGET_MAKE_ENV) $(MAKE) CC=$(TARGET_CC) CXX=$(TARGET_CXX) -C

$(@D)
endef
define ALSA_CAPTURE_CLEAN_CMDS

$(TARGET_MAKE_ENV) $(MAKE) -C $(@D) clean
endef
define ALSA_CAPTURE_INSTALL_TARGET_CMDS

$(TARGET_MAKE_ENV) $(MAKE) -C $(@D) install
endef

Contact us for more details: https://www.geniatech.com/

27

define ALSA_CAPTURE_UNINSTALL_TARGET_CMDS
$(TARGET_MAKE_ENV) $(MAKE) -C $(@D) uninstall

endef
$(eval $(generic-package))
endif
4. Create a directory external/alsa_capture/src， write alsa_capture.c
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
printf(“hello world\n”);
return 0;
}
write Makefile 文件
DEPS =
OBJ = alsa_capture.o
CFLAGS = -std=c++11 -lasound
%.o: %.cpp $(DEPS)
$(CC) -c -o $@ $< $(CFLAGS)

alsa_capture: $(OBJ)
$(CXX) -o $@ $^ $(CFLAGS)

.PHONY: clean
clean:
rm -f *.o *~ alsa_capture
.PHONY: install
install:
cp -f alsa_capture $(TARGET_DIR)/usr/bin/
.PHONY: uninstall
uninstall:

rm -f $(TARGET_DIR)/usr/bin/alsa_capture
6. Add the new package to the Buildroot compilation system;
7. Modify package/rockchip/Config.in and add the following line
source "package/rockchip/alsa_capture/Config.in"
8. Configuration selection package
make menuconfig and select the alsa_capture package;
9. Compile
make alsa_capture
10. Pack into the file system
make
11. Recompile the package after modifying the source code
make alsa_capture-rebuild

10.1.6 fs-overlay
The root file system is compiled by default. Some configuration files may not meet the customization
requirements. At this time, fs-overlay can be used. The fs-overlay directory will be replaced to the file
system directory at the final stage of compilation and packaged into the root file system. . The fs-overlay
path is specified by the default configuration file:
BR2_ROOTFS_OVERLAY="board/rockchip/rk3308/fs-overlay"

Contact us for more details: https://www.geniatech.com/

28

For example, we will modify the fstab file and add debugfs and
pstore:

10.1.7 SDK Common configurationmodification

10.1.7.1 Flash Type modification
Configuration file: device/rockchip/rk3308/BoardConfig.mk, the default

configuration is nand device.

Set flash type.
support <emmc, nand, spi_nand, spi_nor>
FLASH TYPE := emmc
Configuration instructions:

EMMC device

FLASH_TYPE=emmc
NAND device

FLASH_TYPE=nand

10.1.7.2 Rootfs switch to ext2

Rootfs can be configured to read and write ext2 file system, which is convenient for system debugging.

1. Modify the bootargs configuration in Kernel:

2.
1. Modify the parameter file corresponding to device\rockchip\rk3308\rockimg\ to

ensure that the rootfs partition is large enough to store the partition image.

Contact us for more details: https://www.geniatech.com/

29

2. Modify the rootfs fi le system type in
device\rockchip\rk3308\BoardConfig.mk:

4. The rootfs partition ext2 file system image will be automatically packaged and
generated, or it can be obtained directly from the following path:

10.2 Buildroot RK Package introduction
Rockchip platform has added support for many software packages on Buildroot, which are
unified under the directory of buildroot/package/rockchip. The following briefly
introduces the software packages on the SDK:

buildroot/package/rockchip
├── adbd------------------------adb daemon
├── alexaClientSDK------------ alexa voice SDK
├── alsa_capture---------------alsa Equipment recording demo program
├── cypress_bsa--------------- Cypress Bluetooth protocol stack and

demo
├── DuerClientSDK------------- Baidu Voice DuerOS SDK
├── gst1-libav-rk--------------- gstreamer libav plugin
├── gstreamer1-iep------------gstreamer iep plugin
├── gstreamer1-rockchip------gstreamer rk plugin
├── libcutils--------------------- Cutils library ported from Android
├── libiep------------------------iep library
├── libion------------------------ion library
├── liblog------------------------ Log library ported from Android
├── LocalPlayer----------------- Local non-screen music player
├── mdev_mount---------------mdev Automount script
├── mpp-------------------------mpp library
├── pcba-------------------------pcba test program
├── pm-suspend-api------------- Sleep wake up multi-process api and

demoo program
├── rkwifibt----------------------- wifi, bt firmware and chip configuration
├── rockchip_modules----------- Kernel modules driver
├── rockchip_test---------------- Test script
├── rockchip_utils--------------- Some general programs, such as the io

command
├── rv1108-firmware------------rv1108 firmware
├── softap------------------------wifi Start ap mode
├── softapServer-----------------wifi Network configuration service
├── wakeWordAgent-------------alexa Wake word agent
├── wifiAutoSetup----------------wifi smart config Network distribution

program
└── wpa_supplicant_realtek-----wpa_supplicant realtek version

Contact us for more details: https://www.geniatech.com/

30

10.3 Pre-built system applications or data
10.3.1 oem.img description

oem.img ：oem 分 The zone image file, which is in the ext2 file system format
by default, is used to preset the customer's application; directly execute the
packaging command to package the oem partition image.

./mkfirmware.sh
generate rockdev/oem.img;

10.3.2 oem Mirror packaging directory modification
The oem partition packs the dueros directory device/rockchip/rk3308/oem by

default. You can modify the packaging directory and oem partition file system by
modifying the following configuration files.

oem path currently has three configurations:
● oem：No voice algorithm program is packaged, only basic functions
● dueros：Baidu Voice SDK, default configuration
● aispeech：Spitz Voice SDK
● iflytekSDK：HKUST iFLYTEK Voice SDK
Configuration file：device/rockchip/rk3308/BoardConfig.mk
Set oem partition type.
ext2 squashfs
OEM_PARTITION_TYPE=ext2

#OEM config: oem/dueros/aispeech/iflytekSDK
OEM_PATH=oem

10.3.3 userdata.img description
userdata.img: userdata partition image file, the default is ext2 file system format,

used to store runtime data, generally a readable and writable file; directly execute the
packaging command to package the userdata partition image.

mkfirmware.sh
generate rockdev/userdata.img;

10.4 New partition configuration
Please refer to \RKDocs\RKTools manuals\Android to add a partition configuration

guide V1.00.pdf

10.5 OTA upgrade
10.5.1 Compile dependency

Rootfs System dependent configuration：

BR2_PACKAGE_RECOVERYSYSTEM=y

Recovery Compile command：

./build.sh recovery

./mkfirmware.sh

After compilation, misc.img and recovery.img will be generated in the rockdev directory

Contact us for more details: https://www.geniatech.com/

31

10.5.2 Upgrade firmware production

Upgrade firmware can support complete partition partition upgrade, or specify
partition upgrade. The package-file file can be modified to remove the partitions that
are not to be upgraded, which can reduce the size of the upgrade package
(update.img).

Note: recovery.img does not support upgrades temporarily and cannot be packaged
into it.

10.5.3 upgrade
Under rootfs, run from the command line:

recoverySystem ota /xxx/update.img

The machine will reboot into recovery and upgrade, if the upgrade package is placed
in the USB flash drive, execute the following command:

recoverySystem ota /mnt/usb_storage/update.img

Available path

Mount path of the U disk: /mnt/usb_storage/

Mount path of sdcard: /mnt/external_sd/

Mount path of flash: /userdata/

10.6 Reset
We save the configuration files that can be read and written in the userdata

partition. The factory firmware will default some configuration parameters. The user
will generate or modify the configuration file after a period of use. Sometimes the user
needs to clear the data, and we need to restore to the factory configuration.

● Solution: When the firmware is packaged, userdata.img is generated, and when
the user requests to restore the factory configuration, the userdata partition is
formatted.

● SDK implementation: Function keys RECOVERY + VOLUMEUP trigger to restore
factory configuration, please refer to the code:

buildroot/board/rockchip/rk3308/fs-overlay/etc/input-event-daemon.conf
board/rockchip/rk3308/fs-overlay/usr/sbin/factory_reset_cfg

Contact us for more details: https://www.geniatech.com/

32

11.hardware information
11.1Interface definition

11.1.1 F r o n t a l p e r s p e c t i v e

Contact us for more details: https://www.geniatech.com/

33

Extension GPIO
PIN Default function PIN Default function

1 VCC_IO_3V3 2 VCC_5V

3 I2C_SDA_A 4 VCC_5V

5 I2C_SCK_A 6 GND

7 GPIO3_C1 8 UART_TX_B

9 GND 10 UART_RX_B

11 UART_RX_A 12 PWM0

13 GPIO0_D6 14 GND

15 SPDIF_OUT 16 I2S_SDI

17 VCC_IO_3V3 18 I2S_SDO

19 PCM_OUT 20 GND

21 PCM_IN 22 I2S_IN

23 PCM_FS 24 PCM_CLK

25 GND 26 UART_TX_A

27 I2C_SDA_B 28 I2C_SCK_B

29 GPIO3_C7 30 GND

31 GPIO0_B4 32 IR

33 PWM1 34 GND

35 SYS_LED 36 I2S_MCLK

37 PWM2 38 I2S_SCLK

39 GND 40 I2S_LRCLK

Contact us for more details: https://www.geniatech.com/

34

11.1.2 Rear view

	9.1.2.1 Create dts file
	9.1.2.2 Modify the Makefile of the directory where
	diff --git a/arch/arm64/boot/dts/rockchip/Makefile

